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NOMENCLATURE

a empirical constant in stress-strain rate relationship, eq |
B width of water surface ¥
b width of river bottom i
C  volumetric or surface concentration of solids ‘
Cp  drag coefficient |
Co ~maximum concentration of solids |
D ice fragment diameter

g acceleration of gravity

7 maximum ice-conveying capacity

k,  roughness height of river bed

k;  roughness height of ice cover

n,  Manning's coefficient

Q 0,t0920, !
Q,, water discharge

Q; ice discharge

q unit width discharge
R hydraulic radius \
Sg  slope of river bed ’
t ice fragment thickness }
u velocity

u;  velocity of ice

x downstream coordinate direction

x;  distance from a nearly uniform flow section to ice jam section
y depth coordinate direction

Y, normal depth

y, total depth of flow

Yy total depth of flow where x = x;

z transverse coordinate direction

«  constant; Q,/]

7. specific weight of water

& annular gap width

€ coefficient of restitution ]
0  side slope of river bank
A
I

© —— e e e e

linear concentration
coefficient of friction
p, pg density of fluid |
p;  density of ice ‘
p,  density of solid
¢ normal stress
T shear stress
T,  shear stress at river bed .
7,  shear stress at water/ice cover interface 3
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MECHANICS OF ICE JAM
FORMATION IN RIVERS

Norbert L. Ackermann and Hung Tao Shen

INTRODUCTION

The principles that govern the motion of ice fragments on the surface of a river are of interest
because of their possible influence on the formation of a river’s surface ice cover. When floating in
isolation, an ice fragment moves at approximately the local surface velocity of the river or stream.
However, if ice fragments occur in sufficient concentration, they collide with one another as well
as with the river banks, reducing their downstream velocity. The mutual interference created by
adjacent ice fragments can significantly reduce a river’s ice-carrying capacity. The extent of this
interferance depends upon the size distribution and physical characteristics of the ice fragments,
their number density, and their mean velocity, as well as the boundary conditions formed by the
river banks.

This report presents an analysis of the stresses produced by the collisional transfer of momentum
between adjacent ice fragments on a river’s surface and describes how stresses influence a river’s ice
transporting capacity. The maximum ice-conveying capacity of a river can be determined using the
theoretical relationships developed in this report. If the upstream supply of ice particles exceeds
the maximum value, a rapid increase in the concentration of the surface layer develops and a sta-
tionary cover starts to form. '

During a river’s prefreeze-up period, ice pans commonly form on the river surface and are trans-
ported downstream with the river flow. These ice pans may grow in size and occur in sufficient
abundance to create a surface ice jam across the river or stream. This surface restriction or barrier
causes the upstream progression of an ice cover, since the incoming ice supply cannot be transported
farther downstream. Such a surface ice jam or bridge also creates a potential location for a river ice
jam in the spring if ice fragments created upstream by spring break-up are arrested by this surface
barrier.

It is believed that the motion of the surface layer created by the ice pans in the fall, as well as
fragmented ice elements in the stream following the spring break-up, can be described by the analy-
sis presented in this report.
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CONSTITUTIVE RELATIONSHIPS

When ice fragments are transported along the surface of a river, the mixture of ice and water that
forms the surface layer can be considered as a material or continuum with its own distinctive mate-
rial properties. At rest, this surface layer forms a rigid boundary that is subject to stresses identical
to those that are produced at the river banks and bottom. Stresses within the rigid ice layer are then
of interest for determining ice thickening processes, the development of ice pressure ridges, or the
conditions for incipient break-up.

Before a stationary, rigid ice cover is formed, the surface layer is formed from a mixture of ice
fragments, water, and slush that is transported downstream by gravity. The stresses generated within
this moving surface layer have a significant influence upon the rate with which the mixture is trans-
ported downstream and, ultimately, upon the conditions required for the formation of a rigid ice
cover.

If the stresses within the surface layer result from the collisional transfer of momentum between
adjacent particles, the flow of this layer is considered to be inertia-dominated. When a river is at its
maximum ice-transporting capacity, the velocities of the ice fragments in the surface layer are of the
same order of magnitude as the average water velocities in the river. For these conditions, therefore,
the assumption that the stresses within the surface layer are inertia-dominated appears to be reason-
able. Although experimental information describing the stresses within a rapidly sheared mixture of
ice fragments and water is not available, there are data available on the constitutive (stress-strain
rate) relationships of other cohesionless granular solids that can be modified to provide information
about the stress state that would exist in the surface layer of a river covered with rapidly flowing ice
fragments.

Bagnold (1954) was the first to describe a theoretical framework for analysis and to develop ex-
perimental information describing the stresses in a rapidly sheared, neutrally buoyant suspension of
granular solids. He used spherical solids of hardened wax and lead that were suspended in water.
The mixture of solids and water was contained in the annular region between two concentric cylin-
ders (Fig. 1). The angular velocity and torque required to rotate the outer cylinder was measured
to obtain the relationship between the velocity gradient of the mixture within the annular gap, the
volumetric concentration of the solids, and the stress required to produce the motion.

The velocity gradient du/dz produced within the annular gap was considered to be constant and
equal to u/5, where u is the velocity of the outer cylinder and § is equal to the gap width. Bagnold
determined that the shear stresses in the inertia-dominated regime could be approximated by the

relationship

A o ]’(‘1'1)’ )
3(Co/C)' P - 1] \dz
where a = an empirical constant
D = diameter of the spherical particles %’;’;“('g;
C = volumetric concentration of solids Rotating Sotid-tiquid
Co = concentration at the densest packing, Qs N Mixture

The normal stress o producing a force perpendicular
to the cylinder walls was found to be proportional to
the shear stress, as described by

o/7 = constant. 2

Savage (1978) and Sayed (1981) conducted tests Figure 1. Schematic diagram of Bagnold s
similar to Bagnold’s using a variety of materials laboratory apparatus.
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create different solid-liquid mixtures, but the mixture for which experimental data was available
that most closely represented the ice fragments and water found on a river surface is the mixture of
hard wax spheres in water that was first studied by Bagnold (1954).

Following Bagnold’s pioneering study, numerous efforts were made to formulate a theoretical
framework that would enable the stresses in a rapidly sheared granular mixture to be predicted. The
studies by Ackermann and Shen (1982), Shen and Ackermann (1982), and Shen (1982) were the
first to provide a quantitative description of the stresses created in a rapidly sheared mixture of
solids and fluids. Their equations described the shear and normal stresses in terms of the density p,
and pyg of the solid and fluid, the diameter D of the granular solids, the coefficient of Kinetic friction
u, the coefficient of restitution €, and the volumetric concentration C within the mixture. An ap-
proximation to the complete constitutive equations described by Shen (1982) for the shear and nor-
mal stresses of disk-shaped solids in a two-dimensional surface layer is

lte A '|‘”
A f1+€ 37 14X du\?
=, —_ —— 3
" op,Dz 2 (3" i .C_D &+——l—ez+“(l+f) #2(1"'5)2‘, (dz) @
™A op 4 n 4
Ite A ‘l
_=6V2 31 _1+A r
o= C, 2 2 2 “)
N L 1_-e_+u_(l:s)_y_ﬂﬂj
T AP 4 m 4

where Cp, is the coefficient for fluid drag of the disk and X is equal to [(C, /C)"/? 117",
Equation 5 was developed for stresses in which the mixture was formed of sphere-shaped particles:

A 12
3 3 f_ 0
e 3 (1+€)® (0.053+0.081 p) (1 +))3 Y "
0 Py 2 192 ﬂ R l_ez +!!l+€!3 !!2§1+€22 dz
2 A 4 T 4

Asreported by Shen and Ackermann (1982), eq 5 accurately describes the variety of laboratory data
that are available if a single experimental constant is used as a constant multiplier to eq 5. The agree-
ment between the laboratory data and the theoretical results obtained from eq 5 is shown in Figure 2.

10° T T T
10 - -
T,
Zi10° —
: &
°
2 Coef. Coef. Lineer
S0’ 7] of restitution of friction concen.
w Material [ B A
10' - — Wax in air 0.2 02 2178
adion }'mm Glass in air 10 02 633s
; m:’::: in water Polystyrene in air 09 02 $.5-7.1
o° Lo Polystyrene inweter 09 02 3068
!
(] t

10? 10° 10*
T, Measured (N/m?)

" e 2. Measured shear stress vs calculated values (eq S with a factor of 10),
3
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The data presented consist of all published data presently available and include tests in which the
solids were either of hardened wax, polystyrene, or glass and the fluid was either water or air. Lab-
oratory data were not available, however, with which to determine the validity of eq 3 describing

the shear stresses in a surface layer of disk-shaped solids. The ratio of eqs 3 and 5 was therefore used
as a multiplying factor to convert Bagnold’s experimental data for rapidly sheared sphere-shaped
solids to an equation appropriate for disk-shaped solids, such as ice fragments on the surface of a
stream. Chiou (1982) describes in detail how eqs 3 and S and other independent methods were used
to modify Bagnold’s experimental results to determine the constitutive relationships for rapidly
sheared disk-shaped solids in a two-dimensional layer. Each of the methods used to modify eq 1 to
represent the motion of disk-shaped solids produced approximately similar results. Chiou deter-
mined that the equation that best described the shear stress in a surface layer of ice fragments is

7=0.021 p; N(1+X) D*(du/dz)? ©

where A = {(0.91/C)"*-1]""!
p; = density of ice
D = ice fragment diameter
dufdz = velocity gradient.of the surface ice layer.

EQUATIONS OF MOTION

Uniform flow

The motion of the surface ice layer in a river is produced by the downstream component of the
gravity forces and the shear force produced by the water moving below the icecovered surface. Dur-
ing steady uniform flow these driving forces are in balance with the resisting forces produced by the
river banks. The average motion of the surface fayer is described by the velocity profile u; = u,(z)
shown in Figure 3b. Using eq 6, the internal shear stress 7 of the ice layer can be expressed in terms
of the velocity gradient, du,/dz, and concentration C of the surface layer. In this way a link is es-
tablished between the forces that act on the ice layer and the deformation rates or velocities that
these forces create.

For a system to be in dynamic and kinematic equilibrium there must be a compatibility at the
ice/water interface between the forces and deformations of the ice layer and those of the lower
layer of ice-free river water. Figure 3b is a pictorial representation of these requirements.

Kinematic constraints

The left-hand portion of Figure 3b illustrates the contours of equal water velocity in the ice-free
river water. These contours intersect the ice layer at the point where the surface layer has a velocity
equal to that represented by the contour. The vertical velocity profile of the water is shown on the
right-hand side of Figure 3b. The maximum velocity occurs at position ¢’. The locus of points of
maximum water velocity over the river width is described by a line through points H, a, b, ¢, d, d’,
¢, b',a’,and K. To maintain kinematic compatibility the vertical velocity profile of the water
drawn upward from the river bed at point g must meet, at point f, with the water velocity drawn
downward from the moving ice cover at point e. These velocity profiles are described in terms of
the boundary shear stress and bed roughness, and must satisfy the relationship

u+2.5vV7p In(30ec’ k)= 2.5v7, /b In(30cg/k,) )

where 7, and k; refer to the shear and roughness at the lower surface of the moving ice cover, 7,
and k,, refer to the shear and roughness at the river bottom, and ec’ and c’g are the distances be-
tween the corresponding points shown in Figure 3b. The integration of the velocity profiles over
the channel cross section must also equal the discharge of water that is specified for the river,

4
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a. Schematization for numerical solution,

Velocity Profile
of Ice Layer

Equal Velocity
Contours

b. Velocity contours and velocity profile of surface ice layer.

Figure 3. Channel cross section.

Dynamic equilibrium
The shear stress 7 within the ice layer and the boundary stresses 7, and 7, can all be determined

from force balances on free-body diagrams of elements within the flow system. If 7, 7, and 7, are
to be the only stresses involved in the free-body analysis, the selection of the free bodies must de-
pend upon the shape of the velocity contours shown in Figure 3b. Since the line through points
H.a,b,c,d d,c, b, a, and K represents a locus of points of maximum velocity, it can be as-
sumed that this is also a line along which the longitudinal shear stress is zero. This can be further
illustrated by considering the vertical velocity profile shown on the right-hand side of Figure 3b.
Since du/dy at point f on the vertical velocity profile it zero, the shear stress is also equal to zero,
since fluid stresses are proportional to some power of the velocity gradient. For a river with uni-
form flow and no ice cover, the total area HIJKH multiplied by the bed slope and specific weight
of water would equal the total resistance force per unit length of river exerted by the bed shear Ty-
For an ice-covered channel, the shaded area on the right-hand side of Figure 3b multiplied by the
bed slope So and specific weight v,, of water therefore represents the force per unit of river length
acting on the ice-covered surface. In steady uniform flow, the boundary stresses can be described

by the relationships
(8)

®

(71), =7 S0 ec’

(fb)' = 7w so c?i
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where (7;), and (75); refer to the boundary stresses at [ocations e and g, respectively. The equa-

tion for the stress T within the ice cover KK'L'L is obtained from a force balance on the free body
(Fig. 3b). This force balance includes the downstream component of the weight of the ice fragments
and water contained in the surface layer as well as the shear forces on the underside of the ice layer
represented by the shaded area LMb'a'KL.

These conditions for dynamic equilibrium and kinematic compatibility enable sufficient equa-
tions to be written to determine the velocity and volume rate of flow of the ice in the surface lay-
er. The formulation of these equations and their method of solution are described by Ackermann
(1979), Free (1979), and Chiou (1982). The solution procedure involves discretizing the channel
into P strips or volume elements, as shown in Figure 3a. The equations of motion were written for
the water and ice portions of each of the volume elements. These equations were then solved nu-
merically.

Nonuniform flow

Numerous complications are introduced by considering conditions where the river’s depth
changes in the direction of flow. The stresses 7; and 7, can no longer be described by eq 8 and 9,
since there is then a variation in the momentum flux in the stream direction. Since none of the
channel boundaries then have parallel surfaces, the geometric complexities involved in discretizing
the channel into subelements greatly complicate the analysis. For nonuniform flow conditions
there are also nonzero values of the transverse mass and momentum flux between each of the P
subelements. The development of the equations of motion considering these nonuniform effects
is described by Chiou (1982).

ICE TRANSPORT: UNIFORM FLOW

Symmetric channel

The ice-transporting capacity of the river shown in Figure 4 is to be determined when the flow
conditions are steady and uniform. Conditions of uniform flow represent an idealized situation in
which the depth of flow as well as ail other flow conditions remain constant along the length of
the river. The channel shown in Figure 4 is symmetric about its centerline, which further simpli-
fies the analysis.

If the number density of the ice fragments on the river surface is sufficiently low, there will be
few collisions between the ice particles and the river banks. The gravity component of the ice/
water system in the stream direction can then be assumed to be balanced entirely by the shear
stresses 7, between the water and the river banks and bottom. In such a situation, the normal
depth y,, can be approximated from the Manning equation expressed in the following form:

an 3/2
= 10
R(p) L.49 s.,"’] (10)
where R(y, ) is the hydraulic radius of

the channel cross section that can be

expressed in terms of the normal depth | 8

—d
Ya» Vp i Manning’s coefficient for the r D ' —]
river bed, and Q is equal to Q,, +0.92
Q;, where 0.920, represents the vol- y
ume of ice transformed to its equiv- a n
alent volume of water. At low sur- - " —
face concentrations, the volume flow T b -
rate of the ice can be expressed as Figure 4. Schematic diagram of channel cross section.
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Qi = [ e C(Z) R ui(z)dz (l l) ’ Qu= COnS'Oﬂ'Eq "
If—-—- - r
where 7
Q; /
u; = 2.5V, [p.(30y,/k,) \
q |

o = VY% Y So ;
and ¢ represents the thickness of the ice frag- c Co 1
ments that occur with the concentration C on Figure S. Ice discharge vs surface concen-
the river surface layer. For a given channel tration.

geometry and water discharge Q, , the ice

discharge @, can be expressed in terms of the concentration of ice in the surface layer, as shown in
Figure 5. The approximately straight line portion of the curve between p and g on Figure S can be
approximated by eq 11. When the concentration of ice on the river surface increases, the collisions
between adjacent particles and the river banks become increasingly effective in producing a mechan-
ism whereby the weight of the ice layer and the underside shear stresses 7; are transferred to the
river banks through the intergranular stresses 7 described by eq 6. Under such flow conditions, the
complete equations of motion must be solved to determine accurately the relationship between Q;
and the surface ice concentration C shown in Figure 5. Bunte (1980) considered a flow in the
trapezoidal channel shown in Figure 4 for which the Manning’s n for the ice and river were n; = 0.3
and n,, =0.25. The maximum ice-conveying capacity /, which corresponds to point r in Figure 5,
was described by the following dimensionless relationship

2
¢(Q—i’%' 2.2 o,s.,) =0. (12)

A quantitative relationship between these variables was obtained from a numerical solution of
the equations of motion. These numerical results were obtained for a range of geometries and
flows that was considered to represent the range of physically realistic river conditions. A statisti-
cal analysis was then performed upon these numerical results to obtain the following equation,
which describes the ice-conveying capacity /,

b

0.083 ., ,,.0.106 s 135
0.682 ,, 11.181 ,1\0.845(2/D) (1/0) gb® So\ 031790
I 2.4(1) (') (D) ( ) (13)

o, “"\o) \b A

(] D
A summary of these results was presented by Ackermann et al. (1981). For a side slope of 8 =
1:% for example, eq 13 can be approximated as

116

I, 0.13 ¢0.32 0.36
b KDo.aab 3% 4 (14

where //b is the maximum ice discharge per unit length of bottom width b, ¢ is O, /b,and K is a
constant. From eq 14 it is apparent that as the characteristic diameter D of the ice fragments in-
creases, the ice-conveying capacity of the river decreases. This relationship is seen in commonly
observed field conditions where ice pans are increasingly retarded in their movement downstream
as they make contact with adjacent ice pans and grow in size through bonding or freezing at their
surfaces of contact. As indicated by eq 14, the unit width ice discharge /b increases as the bed
slope Sy increases. As the unit discharge ¢ increases, the shear 7; on the underside of the ice cover
also incresses, again producing increased values of the ice-conveying capacity. Decreases in the

7




unit discharge //b are produced by a decrease in the river’s base width b. This decrease occurs
since, for the same unit discharge, a reduction in the channel width b produces an increase in the
velocity gradient du,/dz, which, as shown in eq 6, increases the intergranular stress within the ice/
water mixture in the surface layer.

Asymmetric channel

Figure 6 shows a channel that has no geometric symmetry. The solution of the equations of
motion for steady uniform flows in such systems is not significantly complicated. For symmetric
channels, the channel centerline provides the location where du;/dz = 0 and hence provides a con-
venient boundary condition with which to calculate the ice velocity profile. When the channel is
asymmetric, the position where du, /dz = 0 is located by a trial-and-error procedure and merely in-
troduces an additional computational step in the numerical solution. Chiou (1982) describes the
detailed computational procedure required to determine the ice conveyance capacity of a channel
that has no geometric symmetry.

Figure 6. Asymmetric channel,

Figure 7, Nonuniform flow in an ice-covered river.

ICE TRANSPORT: NONUNIFORM FLOW

Consider the flow of an ice-covered river in which the discharge of water and ice is Q, and Q;,
respectively (Fig. 7). If the flow were uniform, the value of Q, would correspond to a surface ice
concentration C, as described in Figure 5. If the concentration of ice upon the river surface were
very low, the value of y,, could be approximated by eq 10. For the specified value of Q,, in a uni-
form flow, there would be a maximum ice-conveying capacity, /, which is also shown in Figure 5.
The ice discharge Q, can be expressed in terms of this maximum conveyance capacity as 0, = al.

Chiou (1982) considered conditions of nonuniform flow, such as those shown in Figure 7,
where the upstream depth y was greater than y, and increased in the downstream direction. He
described the depth of flow at the upstream boundary as equal to 1.01y,,. The water surface pro-
file and concentration of ice fragments upon the river surface were computed in a stepwise man-
ner in the downstream direction. For the prescribed values of @, and @, = a/, the river reach of
length x; was determined, within which the equations of meotion and conditions for the continuity
of flow could be satisfied.

As the depth of flow increased in the direction downstream from section A, the water velocity
as well as the slope of the surface profile decreased. The reduction of water velocity and surface
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slope correspondingly reduced the driving force on the ice layer, thereby producing an increase in
the concentration C of the ice fragments on the surface and a reduction in their downstream velo-
city u;. As long as the product of the surface concentration and the velocity of the ice particles
could provide for the transport of the specified upstream ice supply 0, as shown by eq 15, steady-
state flow conditions could be maintained and the equations of motion would be satisfied.

R
Qi=al=t/ v;(2, x) C(z, x)dz. 15)
0

By traveling sufficiently far downstream, however, a location such as section B will eventually
be reached where a set of values u,(z) and C(z) cannot be found that satisfy the equations of mo-
tion. The volume rate of flow Q, established at the upstream boundary can therefore not be main-
tained below that section, and unsteady-state conditions are created. The concentration of ice at
section B will increase with time, the ice fragments will be compressed by forces from the upstream
flow, and a solid ice cover will start to form. This situation creates the conditions required to initi-
ate an ice jam or obstruction of the surface layer at location B.

Chiou (1982) simulated numerous flow situations by solving the equations of motion for non-
uniform flows in a river with a trapezoidal cross section. He developed the digital computer pro-
gram that was used to find the numerical sofutions; it was restricted to nonuniform flows in sym-
metric channels in which the depth increased in the downstream direction. Figures 8 through 12
provide some of Chiou’s (1982) resuits.

It was found that, even when the channel was conveying ice at its maximum capacity, the depth
of flow described by the water surface profile was essentially the same as when the water surface
was ice-free. The small effect of the ice cover upon the deviation of the water surface profile re-
sulted from the fact that when the river transported ice at its maximum conveyance capacity the
entire ice cover was moving. The ice cover therefore did not present a stationary boundary that
would produce interfacial stresses of the magnitude that existed between the water and the river
bottom. Hence, when applying these results to rivers in the pre-freezeup period, it can be assumed
that the presence of ice pans on the river’s surface does not significantly influence the water surface
elevation. Figure 8 demonstrates this condition by describing conditions when the flow in a river
is 30,000 ft3 /s (850 m’ /s). The river has a bed slope of 0.0001 with a bottom width of 250 ft
(77.2 m) and side slopes of 2:1. The maximum ice-conveying capacity of the river is / = 1950 ft*/s
(55.2m?). Three conditions are given, with the ice entering the upstream boundary at flow rates
of Q;=0.25/,0.5/,and 0.97/ (i.e.«a =0.25,0.5 and 0.97). For these conditions the value of 1.0l Y

100, T =T T T T T T

Y Depth (1)

Q,, - 30,000 1t3/s
Sg = 0.0001
.97 - D=10f
t=21t
5 ] 1= 1960 1/
e L L L V=228 ftfora=0268nd 05

0 40 80 120
x, Distance (miles) 2288 frfor a = 0.97

Figure 8. Water surface profiles for three different ice discharges (a = 0.25, 0.5 and 0.97).
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Figure 12. Ice discharge vs distance to surface ice jam for different diameters
of ice fragments.

at the upstream boundary is 22.5 ft, 22.5 ft, and 22.56 ft, respectively. Figure 8 shows the rela-
tionship between the centerline or total depth of flow y, and the distance x downstream from the

x =0 location where y, = 1.01y,. The river reach of length Xx; extending downstream from section
A (Fig. 7), within which the discharge ; could be maintained, is also described in Figure 8. For
example, Figure 8 shows that the river can maintain an ice discharge of Q, = 0.5(1950 ft*/s) for

an 80-mile reach downstream from the section where the flow has a depth 1% greater than the nor-
mal depth. As seen from the figure, the depth at this limiting downstream location is approximately
twice the normal depth.

Figure 9 shows how the slope of the channel bottom and the ice discharge influence the reach
x; when the river discharge is @, = 30,000 ft*/s. The depth and distance downstream to the loca-
tion of the surface jam is presented in dimensionless form, utilizing the depth y_ as the normaliz-
ing parameter. The figure applies to ice fragment diameters D = 10 ft and ice thicknesses ¢ = 2 ft.
The figure enables the maximum downstream depth for which the ice discharge af could be trans-
ported to be determined.

Figure 10 shows how discharges Q,, and Q, influence the distance x; between the upstream
boundary, where y = 1.01y,,, and the location of the surface ice jam. Another interpretation is
that the downstream section located at x; represents the location of the channel cross section
where the ice-conveying capacity becomes less than the upstream supply Q; =a/. For a given ice
discharge Q,, the distance x; increases with increasing values of Q,,. Variations in the bed width
of the trapezoidal channel influence the relationship between x; and the ice discharge Q, (Fig. 11).
The iceconveying capacity is significantly increased if the diameter of the surface ice fragments
is reduced (Fig. 12). This relationship results from the fact that the shear stress in the surface ice
layer varies in direct proportion to the square of the diameter of the surface particles.

Chiou’s (1982) analysis shows that the water surface profile for steady nonuniform flows is not
significantly influenced by the movement of ice on the surface layer. A greatly simplified method
of analysis could therefore be developed where the river depth and surface slope were first estab-

lished by assuming the flow to be ice-free. With the water surface slope thus fixed, the river could
then be considered to have a surface layer of moving ice fragments. The predetermined slope
would enable the gravity forces on the ice layer to be calculated, and the iceconveying capacity
could be determined by establishing a force balance between the streamwise gravity component
acting on the surface layer, the intergranular stresses, and the boundary shear from the river banks.
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In such an analysis. the shear stresses 7; from the water would be ignored, and the results would
thus underestimate the ice-conveying capacity. Such an analysis, however, would be very simple
to perform and would provide a reasonable approximate sofution,

FURTHER CONSIDERATIONS

Several assumptions were made in this investigation that could not be readily substantiated but
that were expedient for purposes of analysis. The first assumptions were that no slip conditions
existed at the river banks (Fig. 13a) and that the concentration of ice fragments on the river surface
was constant over the full river width (Fig. 13b). A third assumption was that eq 6 accurately de-
scribes the constitutive equations for the surface ice layer. These are believed to be reasonable as-
sumptions of conditions that would exist before the formation of a surface ice bridge. One contra-
diction, however, was introduced by eq 2, which indicated that the normal stresses o were propor-
tional to the shear stresses. The inconsistency that this introduces is illustrated in Figure 13. Fig-
ure 13c shows the distribution of shear stresses in the ice<covered surface layer. If the forces from
the water underneath the ice layer are ignored, the shear stress in the surface ice layer varies linearly
from zero at the channel centerline to a maximum at the river bank. Since eq 2 indicates that nor-
mal stresses are proportional to the shear stresses, it is then consistent to draw a distribution of nor-
mal stresses as in Figure 13d. However, there are no uniformly distributed transverse forces in the
river, acting normal to the river banks, that would produce such a linear variation in the normal
stresses over the river’s cross section. From considerations of a transverse force balance, it would
appear that the normal stress 0 should be constant across the entire river width. This conclusion,
however, is inconsistent with the linearly varying normal stress distribution. This inconsistency
was found to exist in other theories that describe the flow of granular materials in chutes and con-
duits (Jenkins and Cowin 1979). The authors believe, however, that they have identified the causes
of this paradoxical situation and are developing a complete solution to the problem. The solution
will enable the variation in the concentration over the river cross section to be determined and will
allow the slip conditions that exist at the river banks to be accurately modeled. With these modifi-
cations, the analytical solutions that have been presented can be improved.

a. velocity b. Concentration c. Shear Stress d.Normal Stress
Profile Profite Distribution Oistribution

Figure 13. Schematic of the assumptions upon which the analy-
sis is based.
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BASIS FOR MODEL IMPROVEMENT

In Ackermann and Shen (1982), the authors developed a theory that describes the mechanism
by which both normal and shear stresses are developed in a rapidly sheared granular material. By
including a single empirical constant, their theory has been shown to agree with experimental re-
sults where granular mixtures have been sheared in the opening created between two closely spaced
boundaries having a relative velocity y (Fig. 1). Within such small gaps the velocity distribution is
considered to be linear. If the granular flow occurs within boundaries that are not closely spaced,
such as between two river banks, the mechanism for stress generation within the granular mixture
is believed to be more complicated than that previously reported by Ackermann and Shen (1982),
who reported that Reynolds-type stresses were produced by the transfer of momentum between
colliding particles. Unlike existing theories for describing the turbulence of homogeneous fluids,
these Reynolds-type stresses could be accurately determined from theoretical considerations. The
lateral diffusion of the turbulent energy created by the collision of the ice fragments was ignored,
however, when eq 6 was derived to describe the shear stresses in the mixture of ice and water on the
river’s surface layer. To describe completely the stress state within the surface layer of a river, an
energy balance equation that includes the generation of turbulent energy within the mixture, its
dissipation into heat, and its lateral transfer must be considered. Only by introducing these modifi-
cations will it be possible to obtain the complete solution to the problem of the transportation of
ice on a river surface. The concentration of ice is not constant over the river’s width, and the nor-
mal stresses between the ice fragments and the river banks are an important quantity in the solution.
The identification of these normal stresses will permit evaluation of the slip of ice fragments at the
boundary.

By using the changes suggested above to modify the constitutive relationships and by including
the simplifications that were made obvious from the work by Chiou (1982), a more accurate model
of the transportation of ice on a river surface can be developed. The authors are currently conduct-
ing laboratory tests in which disk-shaped solids are transported by gravity forces down a smooth
and evenly inclined chute. Numerous holes on the chute surface provide a vertical air supply that
greatly reduces the frictional forces between the disks and the surface of the chute. The correct
interpretation of the results from these tests is believed to depend upon obtaining an analytical
solution to the problem described above, which considers the dispersion of turbulent energy
through the granular flow.

.

CONCLUSIONS

The maximum ice-conveying capacity of a river depends upon the amount of river water dis-
charge, the channel geometry, the size of the ice fragments, the depth of flow, and the slope of the
water surface profile. A single equation has been found that describes the ice conveyance capacity
of the channel when the flow in a river is uniform so that the depth of the flow remains constant.
When the flow is nonuniform, however, the velocity and concentration of ice fragments upon the
river surface are obtained from a numerical solution of the equations of motion. If the volume
rate of the flow of ice supplied by the upstream reach of a river is specified, the depth of flow can
be determined at the point where the incoming supply exceeds the local ice-conveying capacity of
the river. At such a location a surface ice jam is going to occur.
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